If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x-104=0
a = 2; b = -10; c = -104;
Δ = b2-4ac
Δ = -102-4·2·(-104)
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{233}}{2*2}=\frac{10-2\sqrt{233}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{233}}{2*2}=\frac{10+2\sqrt{233}}{4} $
| 2(x+4)+6=4x-2(-5+x) | | -39=5(x-6)-8x | | 15x+8=17x | | 11x+9+4x+3=132 | | 5^2x×5/5^3x-2=25^2 | | 18=c+5÷2 | | V=72.2-3.8t | | 4/c+15=16 | | 14+y=180 | | 3e-5=15 | | 5((3x-1/7)+2)=35 | | 0.92÷0.4=q | | (x+5)(x-8)(3x-7)=0 | | 2j+14=0 | | 3+6a=45 | | 8c-1=63 | | 2x^2+x=70 | | 8·0.3=k | | 2(x+2)+3x-3=x+16 | | 0.01x^2=5 | | 54x-26-6x=13+48x-39 | | 5–2(x+6)=14 | | 36x^2-478x-2464=0 | | 10(3x-1)=5(4x-4) | | 0.75x^2-3x=5 | | 21 r−3=3(4−23r) | | ½x=4 | | 7x-24=24 | | 6n-9n+5n=10n | | (4x^2+3x+6)+(7x^2+8x)=0 | | 9m=m+24 | | 5d-1=-12 |